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NUMERICAL SPATIAL MARCHING TECHNIQUES FOR ESTIMATING DUCT

ATTENUATION AND SOURCE PRESSURE PROFILES

• by K. J. Baumeister

NASA Lewis Research Center

" Cleveland, Ohio 44135

ABSTRACT

A numerical method is developed that could predict the pressure distribution

of a ducted source from far-field pressure inputs. Using an initial value formu-

lation, the two-dimensional homogeneous tielmholtz wave equation (no steady

flow) is solved using explicit marching techniques. The Von Neumann method

is used to develop relationships which describe how sound frequency and grid

spacing effect numerical stability. At the present time, stability considerations

limit the approach to high frequency sound. Sample calculations for both hard

and soft wall ducts compare favorably to known botmd,_ry value solutions. In
o0

addition, assdming that reflections in the duct are srr_all, this initial value ap-
I

preach is successfully used to determine the attenuition of a straight soft wall

duct. Compared to conventional finite difference cr finite element boundary

value approaches, the numerical marching technique is orders of magnitude

shorter in computation time ,and required computer storage and can be easily

employed in problems involving high frequency sound.

INTRODUCTION

A detailed knowledge of a fan noise source is required in the d_:sign of

turbojet engine acoustic suppressors, since the energy attenuation of the sup-

i presser isstronglydependenton the radialand circumferentialpressure dis-

tributionof thenoisesource {ref.1). Recent experimentaland analytical

• research (refs. 2 to 5) has focused on determining the radial and circumfer-

ential variations in acoustic pressure for typical turbofan sources from both

, !nternal and far-field pressure measurements.

The direct calculation of the internal structure of a ducted noise source

from far-field pressure measurements is essentially a_ initial value problem.

ORIGINAL PAGI_ IS
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__d_,_ If pressure and impcd,-mce are known at the boundary of the system (far-field),

,,•! the pressure (.an be uniquely determined in the vicinity of the inlet as well as •

_ inside the inlet ducting which may contain acoustic energy absorbers in the

•: wall. As an alternate to the statistical approach of Ref. 5, a relatively simple "

:_" numerical marching method is developed by which this information, if available

in the far-field, could be translated directly into a description of a ducted noise

-_ source.
.'_

-,_ In the absence of mean flow. explicit initial value numerical marching
,)]

-_ techniques are developed to obtain a solution to the homogeneous ttelmholtz

_. equation for a two--dimensional cartesian coordinate system. The technique uses

:_,- the finite difference representation of the Iielmholtz equation. Explicit marching :

schemes are emphasized since they reduce the solution of the tlelmholtz equation _
to a simple algebraic algorithm which requires a minimum of computer storage |._';

and running time. Several sample calculations are also presented to illustrate _1__,hov_ a source could be predicted from duct far=field conditions. . •

_g In addition, assuming that reflections in the duct are negligible, file technique
|_

-';_ is used to determine the attenuation of a straight two-dimensional soft wall duct

:'_ by prescribing a pressure distribution and the acoustic impedance of the medium _

_ (Pete) as the initial conditions at the source (see Symbols for all symbol meanings). ..,. The truncation error and stability o.e the_c various marching schemes are _ _
roll

_ studied. In ,,articular, the Von Neumann method i8 used to develop relationships

which describe how sound frequency, transverse grid spacing and marching step "

' size affect numerical stability. _'_

: SYMBOLS

1 An l:ouriel' coefficient, l',q. BI

_'!:_ "l quadratic const:mt, Eq. 26

:_1_])_1.__as a m difference coefficient

, i_!il n
_'_ a Fourier coefficient, Eq 18

'_' b m difference cocffici( at

'_ c quadratic const,_nt. Eq. 27
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c m difference coefficient _!

J ,* speed of sotmd
e o

4aramete r, Eq.d 28

dm difference coefficient

. AdB sound attenuation

_1 Ex acoustic power

e m difference coefficient

f* frequency

H* channel height H_
HIJ

I acoustic-intensity in axial direction
x
i_e|

_',1 J total number of grid points in y direction

:_ K total number of grid points in x direction

L* length o,_ duct

m s spinning mode number

N constant

n transverse mode number _.

p dimensionless Fourier coefficient of pressure p(x,y), p*/l_ A

P*A amplitude of pressure fluctuation or p_)_o2

" Pm pressure defined by Eq. 51

Ipl pressure amplitude, Eq. 10

IPlx averaged IPl, Eq. 11

Pk, ! discrete pressure at kij grid point
r radial coordinate

u dimensionless acoustic particle velocity in x direction u*p*co*H*/if A

W weighting factor

x dimensionless axial coordinate, x*/H*

'_-, x* axial coordinate

ORIGINALPAGE
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y dimensionless transverse coordinate, y*/li*
,!

] y* transverse coordinate

.Xy transverse grid spacing i _

z* acoustic impedance

c error in pressure

specific acoustic impedance

q dinaensionless frequency, l'*II*/c ° or c0*H*/27rc °

0 parameter, Eq. 29

k* wavelength

0o density

axial error variation parameter

angular coordinate

_o* circular frc_luency

_ubscripts

e exit condition |_

k axial index, sec Fig. 1

j trmlsverse index, see Fig. 1

m cell index

n harmonic component

o entrance, x = 0

w wall

Superscripts

* dimensional qmmtity

(--) complex conj ugatc

_._ (1) real part

(2) imaginary part

_fi NUMEIIIC.,I. AI'PROACH .
'_1_i Boundary Value Problem

'i_l The calculation of the propagation of sound in duets using numerical finite

, ii'i_l difference and finite clement technique_ has been described in Refs. 6 to 12.

',_¢_1 l'igure l shows a typical finito-(liffercnce grid network used in Ref. 6 to study

1978014386-005
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the propagation of sound in a two-dimensional duct. In this case, the derfvatives

in the propagation equations are expressed in terms of the values of pressure at

each grid point. For the boundary conditions, an entrance pressure profile, wall

• impedance, and an exit impedance are required. The collection of the various

difference equations at each grid point form a set of simultaneous equations which

are solved to determine the pressure at each grid point. A similar procedure

is used in the finite element theory. In general, the finite element technique is

more convenient to use for complex geometries (ref. 9), although it requires

larger solution times than the finite difference techniques.

The grid system does not have to be confined to the region inside the duct,

as shown in Fig. 1, but it may also be extended to regions external to the duct,

as depicted in Fig. 2(a). Grid points may be extended into the far-field by a

direct placement of grid nodes or elements in the far-field, such as used in

Ref. 12 for a flanged horn or by some type of mapping function (Ref. 7).

However, the boundary value approach presents some severe difficulties.

Geperally, numerical solutions to the boundary value acoustic problems are

limited to relatively low frequency sound and relatively short ducts, because at

least 12 axial grid points or elements are req_ired per wavelength of sound in

order to accurately estimate the acoustic intensity (Ref. 6). A wave envelope

analysis was developed in Refs. 8 and 10 to overcome this difficulty; however,

the technique has only been applied to the simple cases of no flow and plug flow.

Initial Value Problem

In an initial value problem both the pressure and impedance either in the

far-field or at the noise source are known. This is illustrated in Figs. 2Co) and (c).

Using _ marching technique, the pressure at the points adjacent to the boundary

can be immediately calculated. The matrix algebra and computer storage as-

sociated with the boundary valse problem is unnecessary for the initial value
t

problem. Since no matrix of coefficients has to be stored and manipulated as

in the boundary value problem, marching techniques are not limited to low

frequency problems. However, associated with marching techniques is the prob-

1978014386-006
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_2_! lem of numerical stability; that is, preventing the growth of the round-off errors.

%• _ Next, the governing c_uation will be presented along with the formulation of r'l_

_ the initial value approach, f.

-,'-_ ANALYTIC MODEL I_,

"_ Governing Equations and Boundary Conditions

_ For a two dimensional duct with no flow, assuming that the pressure is a

_'_ simple harmonic function of time (e k°t) and that no sources exist in the medium, "

__ the linearized gas-dynamic equations (Ref. 13, p. 5) of continuity, momentum,and energy reduce to the dimensionless Ilelmholtz equation

+ (2r_/) 2 p = 0 (1)

-:,. 0..:.2 Oy 'z ;_'a!'.W

,_:_ The acoustic velocities are given as (Ref. 10)

u = i ap (2)
, ax g_z

v = in-I_ (3)

ay

-_ (The dimensional quantities used to normalize the above parameters are given in the

"_ bymbols section.) In these coordinates, the following boundary conditions apply

_,, at the upper wall

Z*

p*e* ^*c* v* J0 0 PO 0 _P

I.i

0y w

or

Op! -i2_Pw

= 15)
Oy w _w

where "_w is the complex specific acoustic wall impedance. At the lower wall

(3, = O) ',he signs are changed. The starred quanties indicate dimensional terms

while the unstarred terms are dimensiot)less. 81milarily (Ref. 10, Eq. 35) the

axial impedance condition is

u e_-IOp =_Pe (6)
_x e -re

. ,j.'..:.,.;',¢..._. _ .....,,.:... ..... i
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' The sound power that leaves a duct and reaches the far-field is related to :

, the instantaneous axial intensity at the duct exit. The Intensity can be expressed

I in dimensionleas form as _
" I = ._L Real (p-d) (7)

2o,bl

II where the bar denotes the mmplcx conjugate. The total dimensionless acoustic

power is the integral of the intensity over the transverse dimension y

Ex ; J0_' IxlX, y)dy (8) _.

By definition, the sound attenuation (decrease in decibels of the acoustic power -_""
"I V

-4 from x= 0 to x) can be written as .** ,
,I _ _

.L'.

_J /Ex_', (9) "_AdB = 10 lOglo No

The pressure amplitude IPl is a quantity to indicate how the acoustic pres- g_

sure varies in the duct. By definition

useful quantity in comparing the boundary value and marching solution is _!!

'l

ORIGINAL PAGE IS Ip Ix = V p p dy (11)

QUM,ITt' , o

which gives a measure of the pressures across tl_e entire transverse dimension

of the duct.

Finite Diffe fence I"ormul ation
e

Instead of a continuous analytical solution for pressure, marching solutions '.,

determine the pressure at isolated gri(I points by means of finite-difference ap-

proximations. The differential governing equation, in this ca_e Eq. 1, will be

expressed as ,an algebraic equation in terms of the t)ressure_ at the grid points. _' :_7

In the initial value problem to be considered here, the pressures at the grid _)

_. 2,_,_,

'q_IIWT_"-_ ".... _' I _ IL ..... _I ,' ._- m ],-ii": -.:7-_7 ....-- -'$_............. , i . . .. '_i_-.
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points adjacent to tl,e known boundary are found from the known pressure and

impedance at the boundar).

The governing difference equation can be developed by an integriltion process

in which the Ilelmholtz Eq. 1 is integrated over the various cell areas shown in •
Fig. 3

.1

\ Ox2 Oy2

'" Ceil

area

The finito-difference approximations for _c various cells shown in Fig. 3 are

expressed in terms of the coefficients

_l amPk-l'J _bmPk'j-1 + CmPk'J + dmPk'j+l + emPk+i'J = 0 (13)

Tile subcript m denotes the cell number. The expressions for the coefficients

_1 for the various cells can be found in Table I. The derivation of cell 1 of Table I
is presented in Appendix A of this paper. The derivation of the coefficients for the

_ other cells can be found in Ref. 10 (Appendix D) and will not be presented here.The explicit marching technique is based on the face that Pk-l,j is the only

unknown. Therefore, the pressure at (k-l,j) can be solved directly as

_ 1 + + + j) (1't)"_ Pk-l,j am _mPk,j-1 CmPk,j dmPk, j+l emPk+l,

The above equation van be used in marching backward from the end of the duct

as shown In Fig. 3(a). ()n the other hand, if we start from x equal 0 at the

duct inlet mad move towards the duct exit, then Pk+l, j would become the unknown.

In this case. the marching could be started with cell Eqs. 7, 8, and 9 of Fig. 3(b). "

STABILITY CONblI)ERATION8

_tabillty Problem

Equation 14 was applied to the problem of a hard wall duct with a plane

wave existing at the exit (L*/II* = 1) and an exit impedance equal to Poeo(_e** = 1).

, A solution fox" Ip Ix defined by Eq. 11 is displayed in Fig. 4 for a frequency
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parameter of _7= 1. The known analytical solution is given in Ref. 8 for a plane

wave in a hard wall duct
,

p = cos 2_rr/x- i sin 2_7x : (15)

• or substituting into Eqs. 10 and 11 yields

IPl x = I (16)

As seen in Fig. 4, the numerical values of IP Ix are in close agreement with

the analytical value until the axial posiUo11,x equal_ 0.4, Is reached. Obviously,

an instability occurs as the solution is marched from the exit ix = 1.0) to the en-

trance (x = 0). Clearly, the explicit marching equation as given by Eq. 14 is

unstable in this case. Consequently, a detailed analysis of the stability of the

Hemholtz equation is required, to determine when instabilities can occur and

how they can be avoided.
!

, Von Neumarm Method

To analyze the stability of the difference approximation to the Helmholtz "_

: equation, we must study how the errors introduced into the computation propagate. ..

We the exact solution to the difference equation in the form _may express

p(exact) = p(computed) + e(error) (17) _/_

The error may be due to round-off or a computational mistake. The propagation

of errors through the computation is governed by the original difference equation.

-- Assuming the initial and boundary values for the error are zero, then the equa-

tion governing the propagation of errors is the homogeneous form of the defining

difference equation, Eq. 13. -"

For difference relations involving constant coefficients, the errors may be

expanded in a finite £ourier series of the form

• "= an _0k(n) e (18)_k,j L /
11

' This expression for the error was first used by Von Neuman11 (Ref. 14 and 15).

The problem of stability is studied by noting the behavior of the coefficients

_o(n). If any _o(n) is such that

1978014386-010
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Iq_(n) I> I (19)

for any n, then the corresponding error harmonic would grow beyond limit during •

during marching.

_tability Analysis

The stability analysis will be performed for the two marching schemv_

shown in Fig. 5. in these cases, the (k+l, j) values are considered the .mknown,

in contrast to the earlier examples where we were moving from the exit to the

entrance of a duct. The explicit schemes shown in Fig. 5 allow the pressures

to be calculated from a simple algebraic equation of the form of Eq. 13.

To cover these two grid patterns, the stability analysis will be developed

for the grid network sl.own in Fig. 5(b). In this network, the difference approx-

imation for the ltelmholtz wave equation (see Appendix A) becomes

_ 2

_1 Pk+l,j -2 Pk, j +Pk+l,j=-Wk_'_, (Pk,j+l- 2Pk, j +Pk,j-1) :

:_i!'!l -Wk-I"_Y (Pk-l'j_'l-2Pk-l'J +Pk-l'j-1)
2 (20)

-'_:._, whe r c

-_'_:" Wk + Wk- 1 1 (21)

_i._ The weighting factors Wk and Wk_1 indicate the importance of a particular

:'_ grid approximation in the model. For examp!e, if Wk_ 1 equals zero, then

Eq. 20 would reprcscnt the Explicit x grid of Fig. 5(a).

_ince the propagation errors are also governed by Eq. 20, Eq. 18 (for a

._ particular n) is substituted into Eq. 20 with (k,j replacing Pk,j" Dividing
" k m_yj "

° through the resulting equation by an_ e , regrouping terms with the likevalues of 9 k and noting that

"_i inyj+ inyj ei_Y

i

_- . • : ...... ......... .- ,_._ _..- L_--a"-'_'
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e lnyj" = c -inAy (23) : :'L_:

and

" e inlay - 2 + e-inlAy = -2(1 - cos nrAy, = -4 sin 2 _ (24)
•:_! 2

.,_
then the soh, tion for _p obeys the quadratic form

-_i a _p2 _ 2(p + c = 0 (25)

- where
'.d

"" 1
a = (26)

_ 1 +0Wk/2- d/2

: 1 - OWk_ 1
(27)C =

_:_ 1 + 0 Wk/2- d/2

d = (2_rrlAx) 2 (28)

:_2 0 4 Ax 2= -- sm 2 _ (29)

_, \Ay/ 2

,_: The well known solution for _ is written as

_| 1 ,/ 1 C

::] _ =- ± V (30):_ a a2 a

' So that the errors will not grow, I(P I must have a value less than unity

(see Eq. 19). This requires that the coefficients a and c obey the following

inequalities

-1 <1 < 1 (31)
a

and ORIGINAL PAGE 18

-_ +---2, c/a < 1OFPOORQUALITY (32)
'" . ial

- |

However, it i_ convenient to use a more restricted form of Eq. 31

0 < 1 < I (33)
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Eqs. 32 and 33 put stability restrictions on the maximum allowable size

of axial spacing Ax; however, AX must be restricted to even smaller values to

_:_ redact truncation error. From Ref. 6, the required number of axial grid points
/t was

_" K = N11 I2/11' N - 12 (34)

"_4 Th_s,

Ax= W---m< (a5)
K 1211

Also, the transverse spacing Ay was given in Ref. 6 by

Ay = _ (36)
J-1

However, no requirement for the size of transverse spacing Ay was given in

Ref. 6 other than the number of transverse grid pointsbe increased untilcon-

vergence is achieved.

Finally, whenever Eqs. 32 and 33 are conservatively applied, the sine

term in Eq. 29 is assumed to take on the maximum possible value

sin 2 _ = 1 (37)
2

_ Now, Eqs. 32 to 37 will be applied to the grid forms in Fig. 5.

. Explicit X-grid. - For the simplest explicit X,.grld (Fig. 5(a)), the weighting

factor Wk_ 1 is zero :rod Wk equals 1. Thus
.:f]

"3

a = I + 10/2)- (d/2)| -1 138)
J

and

"" c/a = 1 (39)

Applying the first coadition for stability, Eq. 33, yields d > 0 where 0 and d °,

are defined by Eqs. 28 and 29 respectively.

1978014386-013



Finally using Eq. 37 yields the following requirement for numerical stability of

the 5 point X-grid shown in Fig. 5(a)

Ay > 0.32 > 0.32Ay* = O.32 X" (41)

r*/%

Along with Eq. 41, the second condition for stability, Eq 32, mos_ also hold,

but the right hand side of Eq. 32 can net be satisfied since c/a in Eq. 39 is

identical to 1. In this case, the solution fox- _o occurs as complex pairs of

magnituclc equal to unity

_0 - 1, if Ay> 0.._._._2and Ax< 1 02)
'7 1277

Such a case isdefined(Ref.14. p. 337) as havinga linearinstability.

At firstglance,theseresults,Eq$. -lland 42, are disappointing.Consider

Eq. 41. With numerical techniquesiL desirabletohave Ax and A3 related

so thatboth /Xx and Ay can bothbe decreased tozero tocheck convergence.

However, inthisspecialcase ofthel'elmholtzequation,thislimitationon Ay

has an import_mtphysicalinterpretation.Also, Eq..12 hvs the exactproperty

((p= I)requiredforacousticcalc.ulation_;.Both Eos. 41 and 42 willnow be

considered, beginning first with Eq. ,12. .|_

The Fourier components for propagating transverse acoustic modes should

travel with undiminished amplitudes in hard wall ducts (see Eq. B1 - Appendix B

or Rcf. 16). _inct ¢, could represent the x dependence of a pressure wave ,"

just as wcll as an error, ¢0 must be held at one in the numerical calculation. " _,a

• Thus, Eq..t2 has exactly the prol)crtics desired in modeling acoustic propagation _

down a hard wallductforpropagatingtransversemodes. That is,the amplitude :

of the waves in the .x direction in constant (¢ - 1). Other nodal systems could :

be used in this problem besides the two shown in Fig. 5. ltowever, if ¢ should (',:
5

, r_. , , ., a_:-.-.:_,__='_--,:-- ,;-::____ _I_7" ........7-r':L"'m''_v"
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_-u be significantly different from one, thi_ method would lead to incorrect answers.

_]_ Unfortunately, if ¢o equals one, errors are also not diminished in magnitude -

i either. Errors at successive steps may accumulate and because of linear in-

stability the amount of round-off error may ultimately become the dominant factor

in the calculation if many grid points are used (Ref. 15).

Explicit !t-grid. - To prevent the accumulation of errors, the 7 point or ex-

I plicit ll-grid will be employed, as shown in Fig. 5(b) In this case, the weighting [_'_•

factor Wk_ 1 is kept at a small value (10-6) so th_ _. (p will be slightly less than _

one so, that errors do not grow. However, because Wk_ 1 is such a small value, _J_'_"

_. _p can be considered equal to one for practical purposes. Consequently, the *
V

decrease in amplitude of the desired propagating transverse mode will be negligible.._-

To first order, the stability criteria for Ax and Ay are the same as for

the 5-point or explicit X-grid shown in Fig. 5(a). The explicit X-grid will, how-

ever, still be used to start the marching solution. In such a case, the error as- _

sociated with a single step would be negligible.

Now, let us eturn to Eq. 41 for a physical interpretation of its meaning. L

Assume that the argument of the sine term in Eq. 40 is small such that _

sin ~  nay (43) ....
2 2 I,."

Substituting Eq. 43 into Eq. 40 yields -_
:2

n < 217 (44) --
L_: • .

Eq. 44 represents the cutoff condition for a mode te propagate unattenuated down
'1"¢

a hard wall rectangular duct (see Eq. B2, Appendix B). Therefore, Eqs. 41 and 42

can be interpreted to mean that only propagatiug modes can be handled in the

• _ calculation. !

Using Eq. 36 with Eq. 41, the increment Ay can be expressed in terms of [I

the number of grid points J in the y direction as [

"_ _ ,}<_r;?+l (45) |('
_'i[W

_l For a given harmonic to exist in the solution, there must be sufficient grid points

1978014386-015
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to resolve a Fourier component. To define a wave, at least 2 points are re,-

. quired. Therefore

~d
n <- (46)

• 2

or substituting Eq. 46 into Eq. 45 yields

n < _ (47)
2

- which is roughly c<luivalent to Eq. 44 for small values of _7. Thus, the stability

criteria indicate that marching could be tmstable if sufficient grid points are

available to resolve the higher order transverse modes.

As will be shown later, the restriction of handling only propagating modes

will limit the useful application of this technique to high frequency (high 7/)

calculations and to those problems where the cut-off modes do not play an

-_ important part in matching pressure or other boundary conditions.

DIFFERENCE ALGORITItM

The marching equation for calculating pressure down the duct for the central

cell cm_ now be written from Eq. 20 as

- = - + W [Axe2 + 2 -
Pk+I,j (2- (2relAx) 2) Pk, j Pk-l,j k_yy _ (-Pk, j+l Pk,j Pk, j-1 )

hx 2

+ Wk-1 A)'-': (-Pk-l,j+l + 2 Pk-l,j- Pk-l,j-1 ) (48)

For the upper wall cell, soft wall boundary conditions require that

\

z Pk,j +Pk,j- Pk,j-1
! • Pk+l,j = (2 - (2_/Ax) 2) Pk, j - Pk-l,j + 2 Wk _ "_k

?

Ax 2 _ Pk-l,j + Pk-l,j- Pk-l,j-1 (19)
! + 2 Wk_ 1 _ "tk- 1

'1

.-_lll!__,._.£..-- v , "J" _ ' ' i " '- _ ' ...... =......

1978014386-016
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The _uation at the lower wall requires that i - 1 in Eq. 49 becomes j + 1. For

Wk_1 equal to 10-6, the equations represent the explicit H-grid system. For

Wk_1 equal zero and Wk equal unity, the equations represent the explicit X-grid.

DUCT MARCHING EXAMPLES

To illustrate the capabilities and limitations of the marching technique,

sample problems will be presented for the simplest case of a two-dimensional

duct as shown in Fig. 6, instead of the more complicated geomtry shown in Fig. 2.

The advantage of this simplification is that a direct comparison of numerical and

analytical techniques can be made. A boundary value solution for Fig. 6(a) can

be used to set up the exact exit conditions for the problems in Figs. 6(b) and (c).

As a result, the numerical accuracy of the marching technique can be conveniently

checked for the case of soft wall ducts.

Hard Wall Ducts _
t._:,_

In theexample shown inFig. 7, tilestabilityconditionfor a hard wallduct _

isevaluatedfordecreasingvaluesof Ay (increasingJ)for variousmodal inputs

at a dimensionless frequency _7 equals 3. As seen in Fig. 7, for tht_ first mode f._._.__

(n = 0), the calculations are convergent to the analytical solution for J considerably

larger than the value of 10 predicted by Eq. d5. It is likely that the round off _

error is quite small for a plane wave and the calculation is terminated before the

error can grow to a significant value. On the other hand, the higher order trans- _'_--_.

verse modes {n > 0) follow the stability criteria quite closely.

As an additional check shown in Fig. 8, the number of grid points in the

x direction was increased to test for stability. As theory predicted, the results

remain converged.

Soft Wall Duct

Next, the marching techniquc Is applied to a soft wall duct. From Ref. 10,

the boundary value finite dHference solution for a plane wave input was used to

establish the exit conditions. The results arc shown in Fig. 9, As can be seen

in Fig. 9, the explicit H-grid marching technique and the boundary value technique

ORIGINALI_AG_:]_ -_
OF POORQUALITY'
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_il are in exact agx'eemcnZ. Again there was no error growth when the numb_:r of. axial grid points was increased.

_1 l'hase Relationship
d

_, • A marching theory was devised so that the acoustic pressure distribution

at a source might be deduced from far-field measurements. In actual practice,

Refs. 17 and 18 for example, sound pressure level measurements are recorded

at a set of microphone stations in the far-field without regard to the phase

relationship between the various microphone measurements. In the next example,

the Sensitivity of the duct attenuation and source profiles to a change in phase at
i

the duct exit is considered.

For the same problem considered in Fig. 9, again the finite difference solu-

tion from Ref. 10 was used to establish the exit condition. The solid line shown

in Figs 10 and 11 indicates results based on the correct phase relationship as

computed from the boundary value analysis. On the other hand, the dotted line

in Figs. 10 and 11 presents a calculation with an exit pressure of the same

absolute pressure ma_Tfitude (_PL) but of different phase, in this case, the

imaginary part of the acoustic pressure p(2) was assumed to be zero. As seen

in Fig. 10, the improper phase relationship leads to much higher attenuations.

_ Fig. 11 shows a pronounced effect of the exit phase on the calculated source
pressure profile. Obviously a considerably different pressure profile from

that of a plane wave has been generated at the liner entrance. Clearly, if one

wishes to establish the structure of the noise source from far--field measurements,

the farfield measurement must include a reference microphone to establish

the phase.

FAR- I"IEI, D A1)PLICATION
e

i_ As mentioned in the introduction, the impetus to develop the marching teeh

, technique came from a desire to establish the noise source from far-field data.

The purpose of this section is to discuss the possible application of this techni-

que In obtP.inlng information on the spinning mode content of a turbofan engine.

In annlyzing far-field data from a typical turbofan engine, cylindrical and _,

1978014386-018
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_ spherical type coordinate systems should be used to resolve the fan's radial,

circumferential (inside duct) and axial pressure. In such a case, a three
z

dimensional differential wave equation of the form (inside duct)

L _p(r, _, x)) = 0 (50) "

is required. The differential operator L should, of course, be sufficiently

general to account for variable mean flow Mach numbers and variable inlet

geometry. The operator could be cylindrical coordinates inside the duct and

spherical coordinates outside the duct. The coordinate system would be

coupled at the duct exit using some type of matching (see Ref. 19).

Inside the duct, the circumferential variable _ could be separated by

assuming a pressure distribution of the form

ims_
p(r, ¢, x) -- pro(r, x) e (51)

where ms is the "spinning 'w mode number. Therefore, the equation describing

the pressure field reduces to a simplier two-diraensional form,

L _Pm(r'x)) = 0 (52)

Now, let us consider the possible application of Eq. 52 to a numerical solution

for the noise source based on far-field data.

To estimate the modal content of a fan source using the marching technique,

a matrix of grid points would be placed in the acoustic field leading from the

microphones to the fan source, Assume that the microphones are spaced about

a fan inlet at some fixed height above the ground under free field conditions.

Furthermore, assume the microphones are set to measure both magnitude and

phase of the pressure. As was shown in the last example of the previous section,
t

phase information is necessary to account for cancellation of the various modes

in the duct and the far-field.
e

Unfortunately, a unique solution exists at the fan source for any assumed

mode number ms; that is, a lobe pattern tn the far-field would transfer (by

marehing_ to a radial shape in the duct at the source. For numerical calculations,

1978014386-019
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*_._ the range of ms would bc limited to low values of ms (Ref. 3) so that some l_r,

• propagating radial modes exist in the duct. For large values of ms, most if

"i_ not all of the radial modes no longer propagate as a wave (Ref. 16, p. 497). r- Although analytical solutions might allow predictions of the noise source for

large ms, such a solution would be no practical interest since the pressure _

_2il would propagate by diffusion (like heat) and errors in measurement would be

highly magnified (Rcf. 20, pp. 229-231). The Von Neumann analysis will _[_

*il_ again limit the grid spacing to allow only propagating modes in the duct.

Although only propagating modes exist in a duct near its exit, higher order

far-field modes can be generated at the exit by a cllange of geometry (Ref. 21,

. p. 122 or !!of. 22), in this case the inlet lip of a turbofan engine. Therefore,

since all modes propagate in the far-field (Rcf. 13, p. 212), in applying the

marching technique to the far-field, the grid structure must account for a full

ral_gc of acoustic modes. This will be the case since the number of grid points

lcan increase because of the inlargcd area available in the far-field. That is,

using a rectangular system for example, Ay is constant both inside and outside k'
!_j the duct, Eq. -t2; consequently, more grid points can be used in the far-field. _

Because the spinning mode number ms is not known, and tile source will

be multimodal, measurements from a far=field horizontal array of microphones

alone can not uniquely determine the circumferential modal content of a fan.

In effect, a horizontal traverse in the far-field is analogous to a radial traverse

internal to the duct, neither of which give any information on the circumferential _i

modal content of the source. This agrees with the theory of Ref. 5. _

* _ If the marching methodis to be used to deduce circumferential modal patterns

• inside the duct without using any apriori assumptions about the modal content,

i_ additional I)ressure measurements must be taken in the far=field in the _.olatitudc
• direction (Rcf. 23, p. 60). A three dimensional solution of the complete set of

far-field data would lead to a source distribution p(r, q, 0) at the fan face. This

would be decomposed (Fourier series) into the wlrlous circumferential modes.

It' the phasing among the modes is a random variable such as for broadband

_,_II_'_L=_-:L-- _- --it" ............... "_ ........c-'-,_--_ -.......... _........ _. _ _ _.._-.
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noise or if a large number of modes are involved even for a discrete tone, the

direct solution for duct modes from far-field measurements might not be practical. . _

For these cases an approximate approach such as used in Ref. 3 or 4 might be

used.

SUPPREoSOR ATTENUATION WITH PLANE WAVE INPUT
r.

The noise attenuation of a suppressor is now evaluated using the marching

techniques. Consider the attenuation produced in the beginning length L* of an

infinitely long duct which has a uniform impedance along its entire length, as

shown in Fig. 12(a). To numerically predict the attenuation of the entrance

length L* in the infinite duct (Ref..6 to 10), a finite duct of length L* (Fig.. 12(b))

is used with an assumed exit impedance hopefully equal to the impedance which

exists at L* in the infinite duct.

An infinitely long duct with uniform impedance will not have any reflections

at any position in the duct. Consc_luently, the wave propagation in ,'.he entrance

region of the infinite duct can bc represented with a numerical solution to a finite
ur

duct of length L*, as in Fig. 12(b), by choosing the exit impedance at L* so

that the reflections are minimized. For the case of zero mean flow, and a plane

wave input, a o'c* exit impedance was found to give good agreement betweenro O

..... the analytical and numerical results for 77 between 1 and 5 and L*/H* between

e_,_ 0.5 and 6 (Ref. 8, Fig. 9).

Herein, the axial impedance of the medium is assumed to be constant down

the duct; consequently, the impedance of the medium at the noise source (x = 0)

is also assumed to be p_)c*. This entrance impedance assumption precludes any

. = possibility of reflections at the duct entrance and would not be valid in cases "

where strong reflections are known to exist. Using this assumption and the

marching technique, the noise attenuation at the optimum point (point of maxi-

_l mum attenuation in the impedance plane) is now calculated for a two-dimensional .

g duct with L*/tl* values ranging between 0.5 and 5 and an input plane wave with

|
impedance- -used in the numerical analysis were determined from theanalytical-

1 978014386-021
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tc(.hniqucs prcscntccl in Hcf. 2.1.

The numerically cal(ulated attenuations ave comp_lred to the corresponding

analytical results in Fig. 1.2. The numerical results arc given by symbols while

• the analytical results are represented by the solid lines. For dimensionless

frequencies 17 equal to 1 or 2, the numerical ,and analytical results are generally

in poor agreement. Also, for 77 equal to 1, the _malysis breaks down (calculated

numbers go to infinity) for L*/tl* equal or greater than one, while for "q* equal

to 2 the break down begins at L*/tl* equal to 3. Most likely, the truncation

error is large because there are few points in the transverse y direction. In _;,

the case of 71 equals 1, Eq. 45 allows the use of only 4 points. ,t,_..

On the other hand, the analytical and numerical results are in very good

agreement for 71 equal to 5. It is well known (Ref. 25, p. 391), that the trunca- :'¢'

ties error is dominated by the largest spacing increment, in this case Ay. For _

high frequencies, sufficient transverse grid points 'ire now available to reduce _

the truncation error in the y-direction and thereby to accurately predict the :_:

transverse pressure profiles. TheJ'eforc, stability restrictions on Ay limit ,ii

the al)plieation of the marching tec.hnique to high frequency sound, r/ equal to 5 '_

or greater. This limitation applies equally well to the work of the previous _

section _marc hingf tom the duct exit to the eat ran ce). [_'|_!,f_(_,,_

In the simple but practical example just considered, reflections in the duct :,i_

do not exist. In such a case, the aerodynamic' forces producing the noise source

could be calcul,_ted without reference to the acoustic field. Ilowever, a wide

class of problems exists in which the acoustic field l'cacts back in the source

(Ref. 26). such as when p:u'tial blockage _cattering) occurs in a duct (Ref. 16,

-- p. 400) oz" when a duct mode produces a large back L'eaction force on the source
o

(Ref. 16, p. 501). In the_e more complicated situations, an iterative marching

• approach might acc.otmt for reflections in the syste

"I9780"I4386-022
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"?:1 CONCLUDING REMARKS _

..... 1. An initial value numerical method is developed to predict the pressure [_:_

...._. distribution of a ducted source from the downstream pressure measurements. [_._!_ !4

_ The technique is useful for relatively high frequencies (77>- 5). For the special . _,case where reflection in a duct are small; the technique can also be used to esti- _._

_ mate the attenuation o[ a straight soft wall duct. *_'_

_._ 2. Compared to conventional finite difference or finite element boundary b_|_,l_

value approaches, the numerical marching technique is orders of magnitude _b-__

__ shorter in computational time and computer storage requirements. Therefore,

this technique could be used as a companion to the boundary value techniques " _"

_ particularly at high frequencies.

,3. The Von Neurnann method accurately predicts the onset of instability in

_ the numerical calculation. The stability considerations limit the approach to

high frequency sound.

4. Because the marching technique is explicit in nature, the technique _

can readily be applied to three dimensional problem. Thus, the technir'le could
be useful in tracing.far-field pressur_ patterns back to the noise source. Ex-

ample problems also indicate that the phase relationships between microphone

measurements in the far-field must be recorded ff the source distribution is --_

to be calculated. "_

5. The marching technique, in effect, reduces the partial difference equation _
to an ordinary differential equation because the transverse gradient terms are

approximated by previously known values. Thus, in principle, a nonlinear prob-

lem couldbe convenientlyhandledwithRunga Kuttaor other standardtechniques. -_
In addition,thetechniquesmay be applicableto othercomplicationsintheflow

,a

_" field, such as a variable speed of sound (Ref. 27). Of course, the procedure

i' would have to be first applied before one could be certain of its success. In

_ '_! these more complicated cases, the stability analysis could be performed by

_!' computer trialand error todetermine criticalvaluesof Ay and Ax.

1978014386-023
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( _, 6. The marching technique can easily be applied directly to the individual

;_ i_" continuity, momentum, and energy c_tuations. Thus, it is unnecessary to corn-

,;, _ bine these C<luations to obtain a wave c(luation. The combination was performed

_'_if::: herein to simplify the stability analysis, ttopefully, with the addition of flow

:_?:_:: gradients and some nonlinear effects, the stability requirements will not be as

,_i restrictive.

_ _:._ 7. Finally, the marching technique can not be used directly to estimate the

_ attenuation of noise suppressors in situations where large reflections occur in a

::: duct such as would occur with a converging duct. In this case, an assumed

.._ _,_ entrance impedance of Vo^*C*ocould be invalid. However, an iteration process

_._, might be developed which could lead to a valid solution. This ltmitation does

,_}_: not apply to situations where both the pressure and entrance impedance are known

ii,"_ from measurements.

k
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APPENDIX A

FINITE DIFFERENCE FORMULATION I_i

I?The governingdifference(_uationcan be developedby an integrationprocess

inwhich thellelmholtzEq. 1 is integratedover thecellarea, Eq. 12. Eq. 12 can -
|:

be rewritten as li i

l++:
dxdy + dxdy + (2_r??)2 pdxdy = 0 (A1)

ax 2 Oy2 F.

C,;ll Cell Cell •

area area area ORIGINAL PAGE IS _+.
OF POORQUALITY i;,;

L'

The variouspressures and theirderivativesin Eq. A1 are evaluatedatthe edges [_

of thecells,designatedby + and - signsinthefollowingequations. These terms

willbe differentfor each cellbecause theboundary conditions,as well as size I,!_

of the cell vary. i.

For cell number 1 in Fig. 3, the standard approximations for the derivatives i':_

are used ix

' / = xl : dy = (Pk+l j- 2 Pk,j + Pk-l,j ) _y (A2)__,'._ 0x2 O _ I_ ' AXkJ

I +a2P dxdy 8p + AX "
= dx = (Pk,j+l- 2 Pk,j+ Pk,j-l)_y (A3)

, _ ay2 Oy]_ _J _

/ o / / dxdy = (2_r_7)2 _xAy Pk, j (A4)'/ (2ml) 2 pdxdy = (2_)" Pk, j '

where

op += Pk+t,j- Pk,j op[ = Pk,j- Pk-l,j (A5)
/)x: AX 0x' Ax
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9pI+ = Pk,j+l-Pk,j; _pl = Pk, j- Pk,j-I (A6)

• Oyt Ay OyI- Ay

• SubstitutingEqs. A2 toA5 intoEq. A1 gives

_ _,2 F /_V 2 12_1_y)2 /_y',2 =.0 (A7)

-- ' 2 -Q_Pk-l,j-Pk,j-l+2' I +\Ax _ Pk'J-Pk'j+l x) Pk+l,:j

"Zhe finito-difference approximation for cell no. 1, Fxl. A7, as well as the other

cells in Fig. 3 can be written in the form of Eq. 13 in the body of this report.

The derivation of the difference equations at the upper boundary are just as

easy provided one recognizes that

i_! Oy =

0p + "i2 'IPk,j (AS)

as given by Eq. 5. Similar expression can be developed for the exit eondRion.

For the special ease of the explicit If-grid shown in Fig. 5(b), the transverse

-_ grid derivatives at the upper wall would be approximatetJ by

'_ _--_[= Wk(Pk,J,,,- Pk'j-1)+ Wk-l(Pk-l,J- Pk-l'j-l) (A9)'q t)y_ Ay Ay

_p[+_-Wki2 ?/pkd - Wk_ 1 i2 ,IPk_i,J (A10)

0Yl _ktw _k-IIw

The weighting factors Wk and Wk_ 1 are defined by Eq. 21 in the body of this

• paper.

• JF..... _I ._ ........,l "*---.._ -,, _ , ...... • .... ,, ....... _ .... ::: . _ - -- , ___-- - _-::• .... _--_.4_'_ ........_ -
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APPENDIX B

I)IIYSI('a,L SIGNIFICANCE Oi,' VON NEUMANN METIIOD

The Von Neumann method is quite compatible with acoustic problems since

the Fourier representation of the error at each grid point can be also applied to "

an actual transverse harmonic pressure input at the boundary. Therefore, in

addition to evaluating the stability of the carious grid systems, let us consider

what effects the governir, g equations and boundary conditions will have on a

transverse harmonic input for the simple case of a hard wall duct.

The solution to the llelmholtz equation, Eq. 1, for a two-dimensional in.-

finitely long duct with rigid walls is given for example in Ref. 16 (pp. 496 and

504). '/'he nondimen_ional acoustic pressure can expressed (using notation
be

different from Ref. 16) as [
!

t_

-i_ - n2 ×

,_ = cos n_y e (BI)ORIGINALPAGEIS p An
/

OF POORQUALITY n=l

_'_:: where the rigid walls are located at y equals 0 and 1. The symbol n represents
r,
_ the transverse mode number. The characteristic function cosmry satisfies the

J_ condition that the transverse velocity at both walls will be identical to zero for

a hard wall two-dimensional duct.

Eq. B1 indicates that for the mode number n, if

n < 2fl (B°.)

the mode (cos nrry) will propagate tmattenuated down the duct with a eonst,'mt am-

plitude. On the other h_md, if n is greater than 277 the mode will exponentially

decay. It is said to be cutoff. For the special case of n equals 27/ the mode

becomes a transverse standi_, _ wave in the duct; that is, no variation exists in

the x direction. ,

' In a hard wall duct. if Eq. B2 is satisfied, _he numerical marching technique

should predict that the amplitude of a transverse harmonic wave will remain

constant along the duct. This is precisely what occurs when Eq. 42 is satisfied;

3978034386-027
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that is, co must b-; equal to one in the Von Neumann analysis. If co were less than

one, the transverse harmonic mode would decay with distance, which would violate

the true physical situation as indicated by Eq. Bl for propating transverse pressure

modes. Thus, the numerical marching technique has the proper characteristics to

match the physical situation only if q_ equals 1 in the Von Neumann analysis.

In tbe sample problem_ investigated in the body of this paper, plane wave

and single transverse mode inputs were considered, l.'or a plane wave input,

Ref. 6 had found that an exit impedance of o'c* is a good choice for both hard F_-- _r'O 0

and soft wall ducts. Ilowever. for a single harmonic mode, the exit impedance

associated with Eq. B1 is used. Substituting Eq. B1 into Eq. 2 yield for the axial

acoustic velocity of the nth mode.

/
2

' n

un 2_ lq/ 1- _ Pn (B3)
_, 20

Finally, substituting Eqs. B1 _md B3 into Eq. 6 yields for the exit impedance

2-i -1/2

{ni = 1 n / (B4)
ie 27} I

For a singleharmonic modc n, theuse of Eq. B4 as theexitimpedance will

allownumericalcalculationsinfiniteductstobe compared to theanalyticalre-

sultsinan infiniteduct.

ORIGINAL PAGE IS

OFPOORQuMlr
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